Slow escaping points of meromorphic functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow Escaping Points of Meromorphic Functions

We show that for any transcendental meromorphic function f there is a point z in the Julia set of f such that the iterates fn(z) escape, that is, tend to ∞, arbitrarily slowly. The proof uses new covering results for analytic functions. We also introduce several slow escaping sets, in each of which fn(z) tends to ∞ at a bounded rate, and establish the connections between these sets and the Juli...

متن کامل

Hausdorff Dimension of Radial and Escaping Points for Transcendental Meromorphic Functions

We consider a class of transcendental meromorphic functions f : C → C with infinitely many poles. Under some regularity assumption on the location of poles and the behavior of the function near the poles, we provide explicite lower bounds for the hyperbolic dimension (Hausdorff dimension of radial points) of the Julia set and upper bounds for the Hausdorff dimension of the set of escaping point...

متن کامل

Fixed-points and uniqueness of meromorphic functions

Let () () z g z f , be two nonconstant meromorphic functions, and let k n, be two positive integers with. 7 3 + ≥ k n If () () k n f and () () k n g share () z f z CM; and () z g share , IM ∞ then (1) () () z tg z f = for ; 2 ≥ k (2) either () () 2 2 2 1 , cz cz e c z g e c z f − = = or () () z tg z f = for , 1 = k where , , 2 1 c c and c are three nonzero constants satisfying () 1 4 2 2 1 2 − ...

متن کامل

Escaping Points of Entire Functions of Small Growth

Abstract. Let f be a transcendental entire function and let I(f) denote the set of points that escape to infinity under iteration. We give conditions which ensure that, for certain functions, I(f) is connected. In particular, we show that I(f) is connected if f has order zero and sufficiently small growth or has order less than 1/2 and regular growth. This shows that, for these functions, Ereme...

متن کامل

Fixed Points of Difference Operator of Meromorphic Functions

Let f be a transcendental meromorphic function of order less than one. The authors prove that the exact difference Δf =(z+1)-f(z) has infinitely many fixed points, if a ∈ ℂ and ∞ are Borel exceptional values (or Nevanlinna deficiency values) of f. These results extend the related results obtained by Chen and Shon.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2011

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2011-05158-5